
Supplementary Material

S1 Disease model

Each particle encompasses the state variables and model parameters for an SEIR com-
partment model (Eq. S1) and are initially sampled from the prior distributions listed in
Table S1. The flows between compartments are defined by Eqs. S2–S5; stochastic noise
is included in these flows (Eqs. S6–S9) and in the model parameters (Eq. S10) as per
Skvortsov and Ristic (2012). The entire population is assumed to be susceptible at t = 0
and an initial exposure occurs with daily probability pseed (Eq. S11).

xt = [S(t), E(t), I(t), R(t), α(t), β(t), γ(t), η(t)]T (S1)

dS

dt
= −α(Sη)I − ζS − θseed (S2)

dE

dt
= α(Sη)I + ζS + θseed − βE − ζE (S3)

dI

dt
= βE + ζE − γI − ζI (S4)

dR

dt
= γI + ζI (S5)

ζ(S,E,I) ∼ N (µ = 0, σ = σ(S,E,I)) (S6)

σS = κF ·
√
αSηI ·N−1/2 (S7)

σE = κF ·
√

βE ·N−1/2 (S8)

σI = κF ·
√

γI ·N−1/2 (S9)

dα

dt
,
dβ

dt
,
dγ

dt
,
dη

dt
∼ N (µ = 0, σ = κP ) (S10)

θseed =

{
1 if S(t) = 1 and θ(t) < pseed

0 otherwise
(S11)
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Meaning Value

S(0) Initial susceptible population N
E(0) Initial exposed population 0
I(0) Initial infectious population 0
R(0) Initial recovered population 0
α(0) Force of infection ∼ U(0.2, 1)
β(0) Incubation period (days−1) ∼ [U(0.5, 3)]−1

γ(0) Infectious period (days−1) ∼ [U(1, 3)]−1

η(0) Inhomogeneous social mixing exponent ∼ U(1, 2)
pseed Daily probability of seeding an initial exposure 1/36
θ(t) Stochastic variable for seeding an initial exposure ∼ U(0, 1)
κF Scaling factor for the compartment-flow noise 0.025
κP Scaling factor for the parameter noise 0.005

Table S1: Infection model priors and parameter values.
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S2 Particle filter

Particles are initially assigned uniform weights wi (Eq. S12), which are subsequently
adjusted in response to each observation yt (Eq. S13) and normalised so as to sum
to one (Eq. S14). When the effective number of particles (Eq. S15) drops below the
threshold Nmin (Table S2) the particles are resampled in proportion to their weights;
this is done using the systematic (deterministic) method, as described by Kitagawa
(1996, see appendix).

wi(0) = (Npx)
−1 (S12)

w′
i(t | yt) = wi(t− 1) · P (yt | xi

t; k) (S13)

wi(t | yt) = w′
i(t) ·

Npx∑
j=1

w′
j(t)

−1

(S14)

Neff(t) =

Npx∑
j=1

[
w′
j(t)

]2−1

(S15)

Meaning Value

Npx Number of particles 3,600
Nmin Minimum threshold for effective particles 0.75×Npx

Table S2: Particle filter parameters.
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S3 Observation model

Google Flu Trends reports ILI prevalence as integer counts of ILI cases per 100,000 GP
visits, and so we can express the daily probability of an individual presenting with ILI
in the absence of influenza (pbg) as a function of the (imposed) background ILI rate BR

(Table S3) and the daily number of GP visits per individual (vdaily) (Eq. S16). The
value for vdaily was obtained from the reported annual rate of 5,615 GP attendances per
1,000 population (Department of Health & Human Services, 2013).

The probability that an infected individual will visit a GP and be identified as having
ILI (pid) is a parameter of the observation model (Table S3). The probability that an
individual will be identified as an ILI case over some time interval [t−∆, t] is the sum of
two independent events (Eq. S17): becoming infectious (pinf) and being identified (pid),
or not becoming infectious but presenting with an ILI. The probability of becoming
infectious is defined as the fraction of the population that became infectious (i.e., tran-
sitioned from state E to state I) during the time interval (Eq. S18), and subsumes both
symptomatic and asymptomatic infections. In the absence of reliable data to the con-
trary, both types of infection are assumed to be identically infectious. The observation
probability (pid) therefore represents the probability of an infection being symptomatic
and observed.

A negative binomial distribution is used to define the likelihood of obtaining an ILI
presentation rate yt from a given particle xt (Eq. S19). We use the parameter κ to
convert ILI incidence from cases per 100,000 GP visits to population incidence (Eq. S20).
The dispersion parameter k (Eq. S21) controls the variance: as k increases the variance
decreases and the distribution approaches the Poisson.

pbg = vdaily ·BR × 10−5 (S16)

pili(t,∆) = pinf(t,∆) · pid + [1− pinf(t,∆)] ·∆ · pbg (S17)

pinf(t,∆) =
S(t−∆) + E(t−∆)− S(t)− E(t)

N
(S18)

P (yt | xt; k) =
Γ([κ · yt] + k)

Γ(k) · [κ · yt]!
· (pk)k · (1− pk)

[κ·yt] (S19)

κ =
N · vdaily · 7
100, 000

(S20)

pk =
k

k +N · pili
(S21)
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Meaning Value

N Melbourne metropolitan population 4,108,541
vdaily Daily number of GP visits per individual 0.0154
∆ Observation period (days) 7
BR Background ILI rate per 100,000 visits varies; 200–350
k Dispersion parameter varies; 100–103

pid Probability of ILI observation per infection varies; 0.0025–0.1000

Table S3: Observation model parameters.
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S4 Forecast variance and accuracy

Here we show how the forecast variance and accuracy change over the weeks leading up
to the observed epidemic peak for each calendar year.

As shown in Figure S1, the variance of both the peak size and timing forecasts decrease
substantially as the forecasting date approaches the date of the true epidemic peak. Note
that the y-axis is logarithmic and differs in scale between the two plots, since the peak
time forecasts are more precise than the peak size forecasts.

Forecast accuracy increases as the forecast variance decreases (Figure S2) and so the
accuracy increases as the true peak is approached (Figure S3). For example, when using
a threshold of ± 10 days as the definition of an “accurate” prediction of the peak timing
(equivalent to ± 1 week, when aggregating dates into weekly bins) it can be seen that
in 4 of the calendar years under consideration, more than 50% of the weighted forecasts
accurately predicted the timing of the peak 5 weeks in advance.
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Figure S1: The ensemble forecast variances steadily decrease as the true epidemic peak
is approached; the variance (log10) of the predicted size is shown on the left,
the variance (log10) of the predicted time on the right. Results are shown
for BR = 300, pid = 0.05 and k = 10; three years are excluded on the
grounds that the epidemic peak was either very small (2010), absent (2011),
or occurred after an earlier, smaller peak (2014).
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Figure S2: The accuracy of the peak timing forecasts (left, ±7, 10, 14 days) and the peak
size forecasts (right, ±10%, 20%, 33%) increase as forecast variance decreases
(i.e., as forecast precision increases). Forecast accuracy is shown for three
tolerance levels, relative to the true peak time (left) and peak size (right).
Results are shown for the same forecasts as in Figure S1.
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Figure S3: The accuracy of peak timing forecasts (left) and peak size forecasts (right)
increase as the true epidemic peak is approached; dashed lines show 50%
accuracy. Results are shown for the same forecasts as in Figure S1.
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S5 Particle filter robustness

In an effort to avoid particle degeneracy (as observed, e.g., in the 2014 forecasts for
k = 10 and k = 100), we explored a number of approaches to improve filter robustness.

We tested the normal distribution observation model used by Shaman and Kar-
speck (2012), where the variance was a function of the mean (“N S&K”, Figures S4–S5).
However the variance was sufficiently large to reduce forecast performance in every year
except 2013 and 2014. We also explored using similar observation models where the mag-
nitude of the variance was reduced (“N #1” . . . “N #4”, Figures S4–S5) and observed
that this did not improve forecasting performance in 2013 and 2014.

Increasing the number of particles five-fold (“Npx = 18K”) and/or decreasing the
resampling threshold (“Neff > 25%”) did not improve forecasting performance in 2013
and 2014 (as shown for the “N #4” observation model in Figures S6–S7).

We also tested two normal distributions where the variance was estimated using data
from the early phase of the season: first, using all values < 450 (σ = 100); and second,
using all values < 800 (σ = 170), but neither improved forecasting performance in 2013
and 2014, even when the resampling threshold was decreased (“Neff > 25%”), shown in
Figures S8–S9).

We also tested the performance of our original (negative binomial) observation model
when the number of particles was increased five-fold (“Npx = 18K”) and when the
resampling threshold was reduced (“Neff > 25%” and “Neff > 50%”) but, as shown in
Figures S10–S11, this did not improve forecasting performance in 2013 and 2014.

For each of these modifications to the particle filter, we also plotted the resulting
accuracy of the peak timing forecasts over the weeks prior to the true peak (with a
tolerance of ±10 days) against the accuracy of the original method (“Original (k=10)”
and “Original (k=100)”) in Figures S12–S19.

9



Original(k = 10) N  S&K N  #1 N  #2 N  #3 N  #4

Apr

Jul

Oct

Jan

Apr

Jul

Oct

Jan

Apr

Jul

Oct

Jan

Apr

Jul

Oct

Jan

Apr

Jul

Oct

Jan

Apr

Jul

Oct

Jan

Apr

Jul

Oct

Jan

Apr

Jul

Oct

Jan

Apr

Jul

Oct

Jan

2006
2007

2008
2009

2010
2011

2012
2013

2014

Apr May Jun Jul Aug Sep Apr May Jun Jul Aug Sep Apr May Jun Jul Aug Sep Apr May Jun Jul Aug Sep Apr May Jun Jul Aug Sep Apr May Jun Jul Aug Sep

  90% CI       50% CI       Median     

Figure S4: A comparison of our original forecasts (k = 10) with forecasts generated
using the Gaussian observation model of Shaman & Karspeck (“N S&K”,
where variance is a function of the mean) and other Gaussian observation
models with reduced variances (“N #1” . . . “N #4”).

10



Original(k = 100) N  S&K N  #1 N  #2 N  #3 N  #4

Apr

Jul

Oct

Jan

Apr

Jul

Oct

Jan

Apr

Jul

Oct

Jan

Apr

Jul

Oct

Jan

Apr

Jul

Oct

Jan

Apr

Jul

Oct

Jan

Apr

Jul

Oct

Jan

Apr

Jul

Oct

Jan

Apr

Jul

Oct

Jan

2006
2007

2008
2009

2010
2011

2012
2013

2014

Apr May Jun Jul Aug Sep Apr May Jun Jul Aug Sep Apr May Jun Jul Aug Sep Apr May Jun Jul Aug Sep Apr May Jun Jul Aug Sep Apr May Jun Jul Aug Sep

  90% CI       50% CI       Median     

Figure S5: A comparison of our original forecasts (k = 100) with forecasts generated
using the Gaussian observation model of Shaman & Karspeck (“N S&K”,
where variance is a function of the mean) and other Gaussian observation
models with reduced variances (“N #1” . . . “N #4”).
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Figure S6: A comparison of our original forecasts (k = 10) with forecasts generated using
a Gaussian observation model (“N #4”) where the number of particles was
increased five-fold (“Npx = 18K”) and with a lower resampling threshold
(“Npx = 18K,Neff > 25%”).
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Figure S7: A comparison of our original forecasts (k = 100) with forecasts generated
using a Gaussian observation model (“N #4”) where the number of particles
was increased five-fold (“Npx = 18K”) and with a lower resampling threshold
(“Npx = 18K,Neff > 25%”).
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Figure S8: A comparison of our original forecasts (k = 10) with forecasts generated using
Gaussian observation models with constant variances (“N(σ = 100)” and
“N(σ = 170)”), and with a lower resampling threshold (“N(σ = 170), Neff >
25%”).
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Figure S9: A comparison of our original forecasts (k = 100) with forecasts generated us-
ing Gaussian observation models with constant variances (“N(σ = 100)” and
“N(σ = 170)”), and with a lower resampling threshold (“N(σ = 170), Neff >
25%”).
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Figure S10: A comparison of our original forecasts (k = 10) with forecasts generated
using the original model where the number of particles was increased five-
fold (“Npx = 18K”) and where the resampling threshold was decreased
(“Neff > 25%” and “Neff > 50%”).
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Figure S11: A comparison of our original forecasts (k = 100) with forecasts generated
using the original model where the number of particles was increased five-
fold (“Npx = 18K”) and where the resampling threshold was decreased
(“Neff > 25%” and “Neff > 50%”).
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Figure S12: A comparison of our original forecasts (k = 10) with forecasts generated
using the Gaussian observation model of Shaman & Karspeck (“N S&K”,
where variance is a function of the mean) and other Gaussian observation
models with reduced variances (“N #1” . . . “N #4”).
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Figure S13: A comparison of our original forecasts (k = 100) with forecasts generated
using the Gaussian observation model of Shaman & Karspeck (“N S&K”,
where variance is a function of the mean) and other Gaussian observation
models with reduced variances (“N #1” . . . “N #4”).
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Figure S14: A comparison of our original forecasts (k = 10) with forecasts generated
using a Gaussian observation model (“N #4”) where the number of par-
ticles was increased five-fold (“Npx = 18K”) and with a lower resampling
threshold (“Npx = 18K,Neff > 25%”).
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Figure S15: A comparison of our original forecasts (k = 100) with forecasts generated
using a Gaussian observation model (“N #4”) where the number of par-
ticles was increased five-fold (“Npx = 18K”) and with a lower resampling
threshold (“Npx = 18K,Neff > 25%”).
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Figure S16: A comparison of our original forecasts (k = 10) with forecasts generated us-
ing Gaussian observation models with constant variances (“N(σ = 100)” and
“N(σ = 170)”), and with a lower resampling threshold (“N(σ = 170), Neff >
25%”).
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Figure S17: A comparison of our original forecasts (k = 100) with forecasts generated us-
ing Gaussian observation models with constant variances (“N(σ = 100)” and
“N(σ = 170)”), and with a lower resampling threshold (“N(σ = 170), Neff >
25%”).
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Figure S18: A comparison of our original forecasts (k = 10) with forecasts generated
using the original model where the number of particles was increased five-
fold (“Npx = 18K”) and where the resampling threshold was decreased
(“Neff > 25%” and “Neff > 50%”).
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Figure S19: A comparison of our original forecasts (k = 100) with forecasts generated
using the original model where the number of particles was increased five-
fold (“Npx = 18K”) and where the resampling threshold was decreased
(“Neff > 25%” and “Neff > 50%”).
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